Sharp Lpestimates for the ∂bequation on the boundaries of real ellipsoids in Cn
From MaRDI portal
Publication:4288031
DOI10.1080/03605309408821009zbMath0795.35066OpenAlexW2004759102MaRDI QIDQ4288031
Publication date: 12 May 1994
Published in: Communications in Partial Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03605309408821009
integral representationsweakly pseudoconvex domainsmixed homogeneitiesweak-type estimatetangential Cauchy- Riemann equation
Integral representations of solutions to PDEs (35C15) (overlinepartial) and (overlinepartial)-Neumann operators (32W05) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) (overlinepartial)-Neumann problems and formal complexes in context of PDEs (35N15)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- \(L^ 2\) estimates and existence theorems for the tangential Cauchy-Riemann complex
- Sobolev estimates for the Lewy operator on weakly pseudo-convex boundaries
- Sharp Hölder estimates for \({\bar\partial}\) on ellipsoids
- The range of the tangential Cauchy-Riemann operator
- Optimal Lipschitz and \(L^p\) regularity for the equation \(\overline\partial u=f\) on strongly pseudo-convex domains
- Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Valeurs au bord pour les solutions de l'opérateur $d^n$, et caractérisation des zéros des fonctions de la classe de Nevanlinna
- A FORMULA AND ESTIMATES FOR THE SOLUTIONS OF THE TANGENTIAL CAUCHY–RIEMANN EQUATION
- H. LEWY'S EQUATION AND ANALYSIS ON A PSEUDOCONVEX MANIFOLD. II
- Hölder and Lp estimates for solutions of ∂u = f in strongly pseudoconvex domains
- INTEGRAL REPRESENTATION OF FUNCTIONS IN STRICTLY PSEUDOCONVEX DOMAINS AND APPLICATIONS TO THE $ \overline{\partial}$-PROBLEM