Implicit a posteriori error estimation using patch recovery techniques
DOI10.2478/s11533-011-0119-7zbMath1247.65141OpenAlexW2167388394MaRDI QIDQ432251
Tamás L. Horváth, Ferenc Izsák
Publication date: 3 July 2012
Published in: Central European Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://research.utwente.nl/en/publications/implicit-a-posteriori-error-estimation-using-patch-recovery-techniques(75a82889-b5d7-49a8-9a12-90b25732914f).html
convergencefinite element methodnumerical examplesgradient recoveryelliptic boundary value problemimplicit a posteriori error estimators
Boundary value problems for second-order elliptic equations (35J25) Error bounds for boundary value problems involving PDEs (65N15) Stability and convergence of numerical methods for boundary value problems involving PDEs (65N12) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Complexity and performance of numerical algorithms (65Y20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A posteriori estimates for partial differential equations
- Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems
- Superconvergence phenomenon in the finite element method arising from averaging gradients
- A posteriori error estimators in the finite element method
- A posteriori error estimators for convection-diffusion equations
- A posteriori error estimation of steady-state finite element solutions of the Navier-Stokes equations by a subdomain residual method
- Theory and practice of finite elements.
- Superconvergence in Galerkin finite element methods
- The influence and selection of subspaces for a posteriori error estimators
- A unifying theory of a posteriori finite element error control
- Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates
- Nodal O(h<sup>4</sup>)-Superconvergence in 3D by Averaging Piecewise Linear, Bilinear, and Trilinear FE Approximation
- A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations
- Superconvergence of quadratic finite elements on mildly structured grids
- Implicit a posteriori error estimates for the Maxwell equations
- Fully Computable Bounds for the Error in Nonconforming Finite Element Approximations of Arbitrary Order on Triangular Elements
- Some A Posteriori Error Estimators for Elliptic Partial Differential Equations
- Error Estimate Procedure in the Finite Element Method and Applications
- The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique
- The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity
- Error Estimates for Adaptive Finite Element Computations
- Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence
- Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids
- Some remarks on the history and future of averaging techniques in a posteriori finite element error analysis
- Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM
- A convergent adaptive finite element method for the primal problem of elastoplasticity
- A posteriori error estimates for Maxwell equations
- Computing with hp-ADAPTIVE FINITE ELEMENTS
This page was built for publication: Implicit a posteriori error estimation using patch recovery techniques