Local homology and cohomology on schemes
DOI10.1016/S0012-9593(97)89914-4zbMath0894.14002arXivalg-geom/9503025OpenAlexW2004393802WikidataQ127633971 ScholiaQ127633971MaRDI QIDQ4338377
Ana Jeremías López, Leovigildo Alonso Tarrío, Joseph Lipman
Publication date: 7 August 1997
Published in: Annales Scientifiques de l’École Normale Supérieure (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/alg-geom/9503025
Koszul complexlocal cohomologyadjointnessGrothendieck dualityMatlis dualityderived functorBousfield localizationlocal homologyformal schemefunctorial dualityquasi-compact schemePeskine-Szpiro dualityproregular sequenceWarwick duality theorem
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (75)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dimension projective finie et cohomologie locale. Applications à la demonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck
- Some elementary proofs of basic theorems in the cohomology of quasi- coherent sheaves
- Derived functors of \(I\)-adic completion and local homology
- On homological duality
- Desingularization of two-dimensional schemes
- The higher properties of R-sequences
- On compactification of schemes
- Tate cohomology in commutative algebra
- Affine duality and cofiniteness
- Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Havard 1963/64. Appendix: Cohomology with supports and the construction of the \(f^!\) functor by P. Deligne
- Ein Descente-Lemma und Grothendiecks Projektionssatz für nichtnoethersche Schemata
- Integration of differential forms on schemes.
- Regular Differential Forms and Relative Duality
- The Koszul Complex and Duality
- The Grothendieck duality theorem via Bousfield’s techniques and Brown representability
- On the De Rham cohomology of algebraic varieties
This page was built for publication: Local homology and cohomology on schemes