On the generation of Krylov subspace bases
DOI10.1016/j.apnum.2010.12.009zbMath1253.65049OpenAlexW1970524119MaRDI QIDQ436007
Lothar Reichel, Bernard Philippe
Publication date: 13 July 2012
Published in: Applied Numerical Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.apnum.2010.12.009
convergenceChebyshev polynomialsnumerical examplesiterative methodgeneralized minimal residual methodcondition numbersArnoldi processeigenvalue computationsevaluation of matrix functionsKrylov subspace basisNewton polynomials
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Iterative numerical methods for linear systems (65F10) Numerical computation of matrix norms, conditioning, scaling (65F35) Numerical computation of matrix exponential and similar matrix functions (65F60)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration
- Newton interpolation at Leja points
- A study of semiiterative methods for nonsymmetric systems of linear equations
- A stable Richardson iteration method for complex linear systems
- Fields of values and iterative methods
- The Tchebychev iteration for nonsymmetric linear systems
- Fast Leja points
- A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations
- An adaptive Chebyshev iterative method for nonsymmetric linear systems based on modified moments
- A parallel GMRES version for general sparse matrices
- On hybrid iterative methods for nonsymmetric systems of linear equations
- Fitting parametric curves and surfaces by \(l_\infty\) distance regression
- Matrix Algorithms
- Large-Scale Computation of Pseudospectra Using ARPACK and Eigs
- Error Estimates and Evaluation of Matrix Functions via the Faber Transform
- Further Analysis of the Arnoldi Process for Eigenvalue Problems
- Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme
- Lebesgue constants for Leja points
- On Polynomial Approximation in the Complex Plane with Application to Conformal Mapping
- GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
- Least Squares Polynomials in the Complex Plane and Their Use for Solving Nonsymmetric Linear Systems
- Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator
- A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems
- Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory
- Parallelizable restarted iterative methods for nonsymmetric linear systems. II: parallel implementation
- The Condition of Polynomials in Power Form
- A Newton basis GMRES implementation
- Alternatives for parallel Krylov subspace basis computation
- A Hybrid Chebyshev Krylov Subspace Algorithm for Solving Nonsymmetric Systems of Linear Equations
- Calculation of Pseudospectra by the Arnoldi Iteration
- Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES
- The Condition of Orthogonal Polynomials
- The Chebyshev iteration revisited