Modeling and optimization of non-symmetric plates
From MaRDI portal
Publication:4370799
DOI10.1051/m2an/1997310607331zbMath0894.73088OpenAlexW2486707167MaRDI QIDQ4370799
Juan M. Viaño, Lino Jose Alvarez-Vázquez
Publication date: 10 September 1998
Published in: ESAIM: Mathematical Modelling and Numerical Analysis (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/193854
existenceasymptotic methodthree-dimensional elasticityuniquenessshape optimizationpenalty methodslimit model
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Optimal control of a variational inequality with applications to structural analysis. I: Optimal design of a beam with unilateral supports
- A classification of thin shell theories
- A new model for thin plates with rapidly varying thickness
- Optimal control of a variational inequality with applications to structural analysis. II: Local optimization of the stress in a beam. III: Optimal design of an elastic plate
- Construction d'un modèle d'évolution de plaques avec terme d'inerte de rotation
- Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods
- Reinforced and honey-comb strucures
- Les equations de von Kármán
- A justification of the von Kármán equations
- A remark on the von Kármán equations
- Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory
- The effect of different scalings in the modelling of nonlinearly elastic plates with rapidly varying thickness
- A justification of a nonlinear model in plate theory
- A boundary-layer theory for elastic plates
- A new model for thin plates with rapidly varying thickness. II. A convergence proof
- A new model for thin plates with rapidly varying thickness. III. Comparison of different scalings
- Asymptotic thermoelastic behavior of flat plates
- Justification de modèles de plaques non linéaires pour des lois de comportement générales
- The effect of a thin inclusion of high rigidity in an elastic body
- Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité
- Justification of the two-dimensional equations of a linearly elastic shallow shell
- A new model for nonlinear elastic plates with rapidly varying thickness, ii: the effect of the behavior of the forces when the thickness approaches zero
- A new model for nonlinear elastic plates with rapidly varying thickness
- Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity
This page was built for publication: Modeling and optimization of non-symmetric plates