Spectral asymptotics with a remainder estimate of the Neumann Laplacian on horns: the case of the rapidly growing counting function
From MaRDI portal
Publication:4380621
DOI10.1017/S0308210500027128zbMath0897.58039OpenAlexW2100103020MaRDI QIDQ4380621
Svetlana Boyarchenko, Sergei Levendorskii
Publication date: 4 May 1998
Published in: Proceedings of the Royal Society of Edinburgh: Section A Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1017/s0308210500027128
Cites Work
- Unnamed Item
- Nonclassical eigenvalue asymptotics
- Trace properties of the Dirichlet Laplacian
- Asymptotische Eigenwertverteilung des Laplace-Operators in bestimmten unbeschränkten Gebieten mit Neumannschen Randbedingungen und Restgliedabschätzungen. (Asymptotic distribution of eigenvalues of the Laplace operator in certain unbounded domains with Neumann boundary conditions and remainder estimates)
- The essential spectrum of Neumann Laplacians on some bounded singular domains
- Eigenvalue asymptotics of the Neumann Laplacian of regions and manifolds with cusps
- Spectral properties of Neumann Laplacian of horns
- On the spectrum of the Dirichlet Laplacian for Horn-shaped regions in \(R^ n\) with infinite volume
- Sobolev Embeddings for Generalized Ridged Domains
- The asymptotic distribution of eigenvalues of the Laplace operator in an unbounded domain
- The weyl calculus of pseudo-differential operators
- Spectral asymptotics with a remainder estimate for Schrödinger operators with slowly growing potentials
- ON THE EIGENVALUES OF THE FIRST BOUNDARY VALUE PROBLEM IN UNBOUNDED DOMAINS
This page was built for publication: Spectral asymptotics with a remainder estimate of the Neumann Laplacian on horns: the case of the rapidly growing counting function