A boundary preserving numerical algorithm for the Wright-Fisher model with mutation
DOI10.1007/s10543-011-0351-3zbMath1255.65019OpenAlexW2076363294MaRDI QIDQ438725
Publication date: 31 July 2012
Published in: BIT (Search for Journal in Brave)
Full work available at URL: https://eprints.qut.edu.au/51303/1/51303.pdf
strong convergencestochastic differential equationsWright-Fisher modelboundary preserving numerical algorithm
Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) Stability and convergence of numerical methods for ordinary differential equations (65L20) Ordinary differential equations and systems with randomness (34F05) Computational methods for stochastic equations (aspects of stochastic analysis) (60H35) Numerical solutions to stochastic differential and integral equations (65C30) Genetics and population dynamics (92D99)
Related Items (13)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on the balanced method
- On the distribution of allele frequencies in a diffusion model
- Allele frequencies in multidimensional Wright-Fisher models with a general symmetric mutation structure
- Mathematical population genetics. I: Theoretical introduction.
- An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
- A Theory of the Term Structure of Interest Rates
- Fast strong approximation Monte Carlo schemes for stochastic volatility models
- Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing
- Boundary Preserving Semianalytic Numerical Algorithms for Stochastic Differential Equations
- Balanced Implicit Methods for Stiff Stochastic Systems
- Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations
- A comparison of biased simulation schemes for stochastic volatility models
- Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence
- Balanced Milstein Methods for Ordinary SDEs
This page was built for publication: A boundary preserving numerical algorithm for the Wright-Fisher model with mutation