An inverse spectral theorem for Kreĭn strings with a negative eigenvalue
DOI10.1007/S00605-011-0351-ZzbMath1262.34019OpenAlexW2125806685MaRDI QIDQ438989
Publication date: 31 July 2012
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00605-011-0351-z
Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.) (34L40) Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators (34L20) Spaces with indefinite inner product (Kre?n spaces, Pontryagin spaces, etc.) (46C20) Inverse problems involving ordinary differential equations (34A55)
Related Items (3)
Cites Work
- Existence of zerofree functions \(N\)-associated to a de Branges Pontryagin space
- On semibounded canonical systems
- Pontryagin spaces of entire functions. I
- Pontryagin spaces of entire functions. II
- Schrödinger operators and de Branges spaces.
- Spectral theory of a string
- The inverse spectral problem for canonical systems
- Strings, dual strings, and related canonical systems
- Subspaces of de Branges spaces with prescribed growth
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: An inverse spectral theorem for Kreĭn strings with a negative eigenvalue