Multiplier systems for the modular group on the 27-dimensional exceptional domain
From MaRDI portal
Publication:4395736
DOI10.1080/00927879808826210zbMath0902.11021OpenAlexW2035198092MaRDI QIDQ4395736
Aloys Krieg, Sebastian Walcher
Publication date: 13 September 1998
Published in: Communications in Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/00927879808826210
modular groupcommutator subgroup27-dimensional exceptional domainmultiplier systemssimple formally real Jordan algebras
Exceptional Jordan structures (17C40) Relationship to Lie algebras and finite simple groups (11F22) Other groups and their modular and automorphic forms (several variables) (11F55)
Related Items (5)
CHARACTERS OF PARAMODULAR GROUPS AND SOME EXTENSIONS ⋮ The graded ring of modular forms on the Cayley half-space of degree two ⋮ The resolvent average on symmetric cones of JB-algebras ⋮ Some modular varieties of low dimension ⋮ The graded ring of quaternionic modular forms of degree 2
Cites Work
- The singular modular forms on the 27-dimensional exceptional domain
- The Maaß-space on the half-plane of Cayley numbers of degree two
- Modular forms on half-spaces of quaternions
- Oktaven, Ausnahmegruppen und Oktavengeometrie
- Axioms for inversion in Jordan algebras
- Multiplikatorsysteme der symplektischen Thetagruppe
- The Maaß space for Cayley numbers
- The Maaß space for the nontrivial multiplier system over the Hurwitz quaternions
- Jacobi forms of several variables and the Maaß space
- Exceptional modular form of weight 4 on an exceptional domain contained in \(\mathbb{C}^{27}\)
- Halbräume und ihre holomorphen Automorphismen
- Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen
- An exceptional arithmetic group and its Eisenstein series
- Integral Cayley numbers
- Multiplier systems for Hilbert's and Siegel's modular groups
- On a jordan subalgebra of commutative algebras
- Introductory Lectures on Automorphic Forms
This page was built for publication: Multiplier systems for the modular group on the 27-dimensional exceptional domain