Grothendieck’s theorem on non-abelian 𝐻² and local-global principles
DOI10.1090/S0894-0347-98-00271-9zbMath0893.14015arXivmath/9803113OpenAlexW1776906052WikidataQ102731083 ScholiaQ102731083MaRDI QIDQ4396478
Claus Scheiderer, R. Sujatha, Yuval Z. Flicker
Publication date: 14 June 1998
Published in: Journal of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/9803113
homogeneous spacesreal spectrumlocal-global principlenon-abelian \(H^2\)-cohomology sets of algebraic groups
Étale and other Grothendieck topologies and (co)homologies (14F20) Cohomology theory for linear algebraic groups (20G10) Galois cohomology (11R34) Forms over real fields (11E10)
Related Items (16)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Closed subgroups of G(Q) with involutions
- Classical groups and the Hasse principle.
- Abelianization of the second nonabelian Galois cohomology
- Galois cohomology of the classical groups over fields of cohomological dimension \(\leq 2\)
- Hasse principles and approximation theorems for homogeneous spaces over fields of virtual cohomological dimension one
- Théoremes de finitude en cohomologie galoisienne
- Some Basic Theorems on Algebraic Groups
- Abelian Galois cohomology of reductive groups
- Groupes linéaires sur le corps de fonctions de courbes réelles.
- Approximation Theory and the Rank of Abelian Varieties Over Large Algebraic Fields
- Homology
This page was built for publication: Grothendieck’s theorem on non-abelian 𝐻² and local-global principles