The Dirichlet problem for constant mean curvature graphs in \(\mathbb M\times\mathbb R\)
From MaRDI portal
Publication:441112
DOI10.2140/GT.2012.16.1171zbMath1281.53013OpenAlexW1964482357MaRDI QIDQ441112
Abigail Folha, Harold Rosenberg
Publication date: 20 August 2012
Published in: Geometry \& Topology (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2140/gt.2012.16.1171
Minimal surfaces in differential geometry, surfaces with prescribed mean curvature (53A10) Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42)
Related Items (4)
Existence of barriers for surfaces with prescribed curvatures in \(\mathbb M^ 2{\times}\mathbb R\) ⋮ The Jenkins-Serrin problem for translating horizontal graphs in \(M\times\mathbb{R}\) ⋮ Jenkins-Serrin graphs in \(M\times \mathbb{R} \) ⋮ The Dirichlet problem for the constant mean curvature equation in \(\operatorname{Sol}_3\)
Cites Work
- Unnamed Item
- Unnamed Item
- The Dirichlet problem for constant mean curvature graphs in \(\mathbb H \times \mathbb R\) over unbounded domains
- Construction of harmonic diffeomorphisms and minimal graphs
- General curvature estimates for stable H-surfaces in 3-manifolds applications
- Minimal surfaces in \(M^2\times \mathbb{R}\)
- Minimal surfaces in \(\mathbb{H}^2\times\mathbb{R}\).
- A Morse lemma for convex surfaces
- A Jenkins-Serrin theorem in \(M^2 \times \mathbb R\)
- Interior gradients estimates and existence theorems for constant mean curvature graphs in \(M^n\times\mathbb R\)
- Variational problems of minimal surface type. II: Boundary value problems for the minimal surface equation
- Infinite boundary value problems for surfaces of constant mean curvature
- Variational problems of minimal surface type. I
- The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface
- Minimal surfaces and harmonic diffeomorphisms from the complex plane onto certain Hadamard surfaces
- Infinite boundary value problems for constant mean curvature graphs in ℍ<sup xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> × ℝ and <b>S</b><sup xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> × ℝ
This page was built for publication: The Dirichlet problem for constant mean curvature graphs in \(\mathbb M\times\mathbb R\)