Sharp Fourier type and cotype with respect to compact semisimple Lie groups
DOI10.1090/S0002-9947-03-03139-8zbMath1026.43005arXivmath/0312244OpenAlexW2072062508WikidataQ115289114 ScholiaQ115289114MaRDI QIDQ4417275
Javier Parcet, José Manuel Marco, José García-Cuerva
Publication date: 28 July 2003
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0312244
Fourier transformoperator spacesemisimple Lie groupcompact semisimple Lie groupFourier typecentral functionFourier cotypelocal Hausdorff-Young inequalitysharp Fourier typesharp Fourier type and cotype
Operator spaces and completely bounded maps (46L07) Semisimple Lie groups and their representations (22E46) Harmonic analysis on general compact groups (43A77)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inequalities in Fourier analysis
- L p Fourier Transforms on Locally Compact Unimodular Groups
- The Norm of the L p -Fourier Transform on Unimodular Groups
- Quantized orthonormal systems: A non-commutative Kwapień theorem
- Vector-valued Hausdorff–Young inequality on compact groups
- Pitt's Inequality and the Uncertainty Principle
- A Remark on the Hausdorff-Young Inequality
- The operator Hilbert space 𝑂𝐻, complex interpolation and tensor norms