The cofinal property of the reflexive indecomposable Banach spaces
From MaRDI portal
Publication:442118
DOI10.5802/aif.2697zbMath1253.46009arXiv1003.0870OpenAlexW2963869099MaRDI QIDQ442118
Spiros A. Argyros, Theocharis Raikoftsalis
Publication date: 9 August 2012
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1003.0870
reflexive Banach spacehereditarily indecomposable spacesinterpolation methods\(\ell_{p}\) saturated spaceindecomposable spacessaturated norms
Isomorphic theory (including renorming) of Banach spaces (46B03) Interpolation between normed linear spaces (46B70) Asymptotic theory of Banach spaces (46B06)
Related Items
Interpolator symmetries and new Kalton-Peck spaces ⋮ Embedding uniformly convex spaces into spaces with very few operators ⋮ A hereditarily indecomposable \(\mathcal L_{\infty}\)-space that solves the scalar-plus-compact problem ⋮ On uniformly finitely extensible Banach spaces ⋮ New examples of \(c_{0}\)-saturated Banach spaces ⋮ New examples of \(c_0\)-saturated Banach spaces. II
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A hereditarily indecomposable \(\mathcal L_{\infty}\)-space that solves the scalar-plus-compact problem
- Genericity and amalgamation of classes of Banach spaces
- New examples of \(c_{0}\)-saturated Banach spaces
- New examples of \(c_0\)-saturated Banach spaces. II
- Factoring weakly compact operators
- Convex unconditionality and summability of weakly null sequences
- Ramsey methods in analysis
- The structure of weakly compact sets in Banach spaces
- The Unconditional Basic Sequence Problem
- Banach Spaces With Separable Duals
- A Classification of Tsirelson Type Spaces
- A Characterization of Banach Spaces Containing l 1
- Methods in the theory of hereditarily indecomposable Banach spaces
- Some stability properties of c0-saturated spaces
- Interpolating hereditarily indecomposable Banach spaces
- On nonseparable reflexive Banach spaces
- Projection of the space (𝑚) on its subspace (𝑐₀)
- Criteres de Compacite dans les Espaces Fonctionnels Generaux