Spectral properties of Cesàro-like operators on weighted Bergman spaces
DOI10.1016/J.JMAA.2012.05.012zbMath1267.47047OpenAlexW2041730029MaRDI QIDQ442488
S. Ballamoole, Thomas Len Miller, Vivien G. Miller
Publication date: 1 August 2012
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2012.05.012
integral operatorspectral propertiesdecomposable operatorsCesàro operatorweighted Bergman spaceoperator semigroupsBishop's property \((\beta )\)generalized scalar operatorsproperty \((\beta )_{\varepsilon}\)
Groups and semigroups of linear operators (47D03) Linear operators on function spaces (general) (47B38) Local spectral properties of linear operators (47A11)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Resolvent estimates and decomposable extensions of generalized Cesàro operators
- The Cesàro operator on the Bergman space \( A^2(\mathbb D)\)
- On the Bergman space norm of the Cesàro operator
- Semigroups of composition operators in Bergman spaces
- Composition Semigroups and the Cesàro Operator OnH p
- Bishop's Property (β) and the Cesàro Operator
- Asymptotic intertwining and spectral inclusions on Banach spaces
- Analytical Functional Models and Local Spectral Theory
- A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces
- The Cesaro Operator in ℓ 2 is Subnormal
This page was built for publication: Spectral properties of Cesàro-like operators on weighted Bergman spaces