The local-global principle for zero cycles on certain fibrations over a curve. I.
From MaRDI portal
Publication:443945
DOI10.1007/s00208-011-0663-2zbMath1253.14026OpenAlexW2053869427MaRDI QIDQ443945
Publication date: 13 August 2012
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00208-011-0663-2
Arithmetic ground fields (finite, local, global) and families or fibrations (14D10) Varieties over global fields (11G35) Global ground fields in algebraic geometry (14G25)
Related Items (7)
Local-global principle for 0-cycles on fibrations over rationally connected bases ⋮ Progress concerning the local-global principle for zero-cycles on algebraic varieties ⋮ Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l'espace projectif ⋮ Approximation faible pour les 0-cycles sur un produit de variétés rationnellement connexes ⋮ On the equation N K /k (Ξ)=P (t ) ⋮ Compatibility of weak approximation for zero-cycles on products of varieties ⋮ On the fibration method for zero-cycles and rational points
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some observations on motivic cohomology of arithmetic schemes
- Insufficiency of the Brauer-Manin obstruction applied to étale covers
- Fibration method and Manin obstruction
- Isotropy of quadratic forms over function fields of \(p\)-adic curves
- A finiteness theorem for the Chow group of zero-cycles of a linear algebraic group on a \(p\)-adic field
- On the Brauer–Manin obstruction for zero-cycles on curves
- Zéro-cycles de degré 1 sur les solides de Poonen
- Absolute cohomological purity
- Rational points and zero-cycles on fibred varieties: Schinzel's hypothesis and Salberger's device
- Obstruction de Brauer-Manin pour les zéro-cycles sur des fibrations en variétés de Severi-Brauer
- THE BRAUER–MANIN OBSTRUCTION FOR ZERO-CYCLES ON SEVERI–BRAUER FIBRATIONS OVER CURVES
- Principe local-global pour les zéro-cycles sur les surfaces réglées
- Descent on fibrations over the projective line
- Astuce de Salberger et Zéro-cycles Sur Certaines Fibrations
- Number of Points of Varieties in Finite Fields
This page was built for publication: The local-global principle for zero cycles on certain fibrations over a curve. I.