Algorithms for combinatorial structures: well-founded systems and Newton iterations
From MaRDI portal
Publication:444909
DOI10.1016/j.jcta.2012.05.007zbMath1246.05012arXiv1109.2688OpenAlexW2098195816MaRDI QIDQ444909
Michèle Soria, Carine Pivoteau, Bruno Salvy
Publication date: 24 August 2012
Published in: Journal of Combinatorial Theory. Series A (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1109.2688
Exact enumeration problems, generating functions (05A15) Permutations, words, matrices (05A05) Explicit solutions, first integrals of ordinary differential equations (34A05)
Related Items (14)
A quantitative study of fork-join processes with non-deterministic choice: application to the statistical exploration of the state-space ⋮ Tuning as convex optimisation: a polynomial tuner for multi-parametric combinatorial samplers ⋮ On the Degeneracy of Random Expressions Specified by Systems of Combinatorial Equations ⋮ On the number of planar Eulerian orientations ⋮ Recursive Combinatorial Structures: Enumeration, Probabilistic Analysis and Random Generation ⋮ Exact-Size Sampling of Enriched Trees in Linear Time ⋮ Convergence of Newton's method over commutative semirings ⋮ Simplifications of Uniform Expressions Specified by Systems ⋮ Formulae and Asymptotics for Coefficients of Algebraic Functions ⋮ Free integro-differential algebras and Gröbner-Shirshov bases. ⋮ On the number of unary-binary tree-like structures with restrictions on the unary height ⋮ An algorithm computing combinatorial specifications of permutation classes ⋮ Counting and generating permutations in regular classes ⋮ Statistical properties of lambda terms
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dérivées directionnelles et développements de Taylor combinatoires. (Directional derivatives and combinatorial Taylor expansions)
- Une approche combinatoire pour l'itération de Newton-Raphson
- Éclosions combinatoires appliquées à l'inversion multidimensionnelle des séries formelles. (Combinatorial bloomings applied to the multidimensional inversion of formal series)
- Une combinatoire sous-jacente au théorème des fonctions implicites. (Combinatorics underlying the implicit functions theorem)
- On combinatorial differential equations
- Une théorie combinatoire des séries formelles
- On asymmetric structures
- Counting asymmetric enriched trees
- A calculus for the random generation of labelled combinatorial structures
- Relax, but don't be too lazy
- Fast Algorithms for Manipulating Formal Power Series
- Boltzmann Samplers for the Random Generation of Combinatorial Structures
- Boltzmann Sampling of Unlabelled Structures
This page was built for publication: Algorithms for combinatorial structures: well-founded systems and Newton iterations