Localization lemmas for the Bergman metric at plurisubharmonic peak points
From MaRDI portal
Publication:4457781
DOI10.1017/S0027763000025538zbMath1045.32009WikidataQ125006768 ScholiaQ125006768MaRDI QIDQ4457781
Publication date: 17 March 2004
Published in: Nagoya Mathematical Journal (Search for Journal in Brave)
Invariant metrics and pseudodistances in several complex variables (32F45) Bergman spaces of functions in several complex variables (32A36) Plurisubharmonic extremal functions, pluricomplex Green functions (32U35)
Related Items
Peak points for pseudoconvex domains: A survey ⋮ On the Bergman metric on bounded pseudoconvex domains an approach without the Neumann operator
Cites Work
- Unnamed Item
- On the extension of \(L^ 2\) holomorphic functions
- Localization of invariant metrics
- Boundary behavior of the Bergman kernel function on pseudoconvex domains
- Mesures de Monge-Ampère et mesures pluriharmoniques. (Monge-Ampère measures and pluriharmonic measures)
- Une classe de domaines pseudoconvexes. (A class of pseudoconvex domains)
- Lower bounds on the Bergman metric near a point of finite type
- Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions
- Pseudoconvex domains: Existence of Stein neighborhoods
- Biholomorphic maps of weakly pseudoconvex domains
- The Bergman metric on hyperconvex domains
- Quantitative estimates for the Green function and an application to the Bergman metric
- An alternative proof of an extension theorem of T. Ohsawa
- Construction of p.s.h. functions on weakly pseudoconvex domains
- An estimate for the Bergman distance on pseudoconvex domains
- \(L^ 2\) estimates and existence theorems for the \(\partial\)-operator
- Hyperconvexity and Bergman completeness
This page was built for publication: Localization lemmas for the Bergman metric at plurisubharmonic peak points