Zero cycles on fibrations over a curve of arbitrary genus
From MaRDI portal
Publication:447770
DOI10.1215/00127094-1699441zbMath1248.14030arXiv1010.1883OpenAlexW2011423431MaRDI QIDQ447770
Publication date: 29 August 2012
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1010.1883
Arithmetic ground fields (finite, local, global) and families or fibrations (14D10) Algebraic cycles (14C25) Global ground fields in algebraic geometry (14G25) (Equivariant) Chow groups and rings; motives (14C15)
Related Items (20)
Pathologies of the Brauer-Manin obstruction ⋮ Local-global principle for 0-cycles on fibrations over rationally connected bases ⋮ Le complémentaire des puissances -ièmes dans un corps de nombres est un ensemble diophantien ⋮ Progress concerning the local-global principle for zero-cycles on algebraic varieties ⋮ Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l'espace projectif ⋮ Approximation faible pour les 0-cycles sur un produit de variétés rationnellement connexes ⋮ On the equation N K /k (Ξ)=P (t ) ⋮ Divisibility results for zero-cycles ⋮ On the cohomology of reciprocity sheaves ⋮ Une liste de problèmes ⋮ Towards the Brauer-Manin obstruction on varieties fibred over the projective line ⋮ Compatibility of weak approximation for zero-cycles on products of varieties ⋮ Brauer-Manin obstruction for zero-cycles on certain varieties ⋮ Weak approximation for 0-cycles on a product of elliptic curves ⋮ A local to global principle for higher zero-cycles ⋮ Degree and the Brauer-Manin obstruction ⋮ Zéro-cycles sur les espaces homogènes et problème de Galois inverse ⋮ On the fibration method for zero-cycles and rational points ⋮ Le principe de Hasse pour les espaces homogènes : réduction au cas des stabilisateurs finis ⋮ Applications of the fibration method to the Brauer–Manin obstruction to the existence of zero-cycles on certain varieties
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A finiteness theorem for zero-cycles over \(p\)-adic fields
- Intersections of two quadrics and pencils of curves of genus 1
- Some observations on motivic cohomology of arithmetic schemes
- On the Chow groups of certain rational surfaces: a sequel to a paper of S. Bloch
- Zero-cycles on rational surfaces over number fields
- Arithmetic theory of arithmetic surfaces
- Real and étale cohomology
- Rationally connected varieties over finite fields
- A finiteness theorem for the Chow group of zero-cycles of a linear algebraic group on a \(p\)-adic field
- Zero cycles on conic fibrations and a conjecture of Bloch
- The arithmetic of the Chow group of zero-cycles
- Unramified class field theory of arithmetical surfaces
- Local cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne
- Linear determinants with applications to the Picard scheme of a family of algebraic curves
- Commutative group schemes
- Hyperbolic and Diophantine analysis
- Bertini theorems for hypersurface sections containing a subscheme
- Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties.
- Rational points and zero-cycles on fibred varieties: Schinzel's hypothesis and Salberger's device
- Obstruction de Brauer-Manin pour les zéro-cycles sur des fibrations en variétés de Severi-Brauer
- THE BRAUER–MANIN OBSTRUCTION FOR ZERO-CYCLES ON SEVERI–BRAUER FIBRATIONS OVER CURVES
- Descent on fibrations over P1k revisited
- Principe local-global pour les zéro-cycles sur les surfaces réglées
- Lichtenbaum-Tate duality for varieties over p-adic fields
- Bloch–Ogus Sequence in Degree Two
- Arithmetic on curves of genus 1. VII. The dual exact sequence.
- Number of Points of Varieties in Finite Fields
- Weil transfer of algebraic cycles.
- Higher-dimensional algebraic geometry
This page was built for publication: Zero cycles on fibrations over a curve of arbitrary genus