Étude de l'équation de la chaleur $\Delta u=c(M)u(M)$, $c(M)\ge0$, au voisinage d'un point singulier du coefficient
From MaRDI portal
Publication:4478647
DOI10.24033/asens.811zbMath0002.25902OpenAlexW2289760982MaRDI QIDQ4478647
Publication date: 1931
Published in: Annales scientifiques de l'École normale supérieure (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=ASENS_1931_3_48__153_0
Related Items (10)
A form of classical Picard principle ⋮ Banach spaces of bounded solutions of Δu = Pu (P ≥ 0) on hyperbolic riemann surfaces ⋮ A set of capacity zero and the equation $\Delta u=Pu$ ⋮ A remark on Picard principle, II ⋮ Nonmonotoneity of Picard Principle ⋮ Das Picard-Prinzip und verwandte Fragen bei Störungen von harmonischen Räumen ⋮ Schrödinger operators with highly singular, oscillating potentials ⋮ Dirichlet integral and Picard principle ⋮ Picard principle for finite densities ⋮ Minimal thinness in an isolated singularity of the Schrödinger equation and application to the Picard principle
This page was built for publication: Étude de l'équation de la chaleur $\Delta u=c(M)u(M)$, $c(M)\ge0$, au voisinage d'un point singulier du coefficient