Symplectic 4-manifolds with Hermitian Weyl tensor
DOI10.1090/S0002-9947-00-02624-6zbMath0990.53017WikidataQ125273079 ScholiaQ125273079MaRDI QIDQ4501114
John Armstrong, Vestislav Apostolov
Publication date: 3 September 2000
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
almost Kähler manifoldEinstein manifoldWeyl tensorsymplectic manifoldGoldberg conjecturecompact almost Kähler 4-manifold
Symplectic manifolds (general theory) (53D05) Global differential geometry of Hermitian and Kählerian manifolds (53C55) Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Local differential geometry of Hermitian and Kählerian structures (53B35) General geometric structures on manifolds (almost complex, almost product structures, etc.) (53C15) Methods of global Riemannian geometry, including PDE methods; curvature restrictions (53C21)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On some 4-dimensional compact Einstein almost Kähler manifolds
- Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein
- Some topological obstructions to Bochner-Kähler metric and their applications
- Non-existence of almost Kähler structure on hyperbolic spaces of dimension \(2n\) \((\geqq 4)\)
- Integrability criteria for systems of nonlinear partial differential equations
- Curvature Tensors on Almost Hermitian Manifolds
- The Riemannian Goldberg–Sachs Theorem
- Integrability of Almost Kaehler Manifolds
- Generalization of a Theorem by Goldberg and Sachs
This page was built for publication: Symplectic 4-manifolds with Hermitian Weyl tensor