Secondary Instabilities of Wakes of a Circular Cylinder Using a Finite Element Method
From MaRDI portal
Publication:4503162
DOI10.1080/10618560008940903zbMath0979.76045OpenAlexW2077808266MaRDI QIDQ4503162
Publication date: 21 February 2002
Published in: International Journal of Computational Fluid Dynamics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/10618560008940903
visualizationcircular cylinderlinearized Navier-Stokes equationssupercritical Hopf bifurcationsecondary instabilitiesFloquet stability theorycritical modesperiodic wakesfinite elemental discretizationtwo-dimensional von Kárman vortex street
Finite element methods applied to problems in fluid mechanics (76M10) Wakes and jets (76D25) Stability and instability of nonparallel flows in hydrodynamic stability (76E09)
Related Items
Editorial ⋮ Suppression of vortex shedding for flow around a circular cylinder using optimal control ⋮ Computation of Leading Eigenvalues and Eigenvectors in the Linearized Navier-Stokes Equations using Krylov Subspace Method
Cites Work
- Unnamed Item
- Fluid vortices
- Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies
- An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices
- Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices
- A finite-element study of the onset of vortex shedding in flow past variously shaped bodies
- Bénard-von Kármán instability: transient and forced regimes
- Three-dimensional dynamics and transition to turbulence in the wake of bluff objects
- A global stability analysis of the steady and periodic cylinder wake
- A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder
- Asymmetry and Hopf bifurcation in spherical Couette flow
- The mechanism of transition in the wake of a thin flat plate placed parallel to a uniform flow
- The transition to turbulence in the wake of a circular cylinder