A new velocity-vorticity boundary integral formulation for Navier-Stokes equations
DOI<47::AID-FLD49>3.0.CO;2-F 10.1002/1097-0363(20000915)34:1<47::AID-FLD49>3.0.CO;2-FzbMath0959.76055OpenAlexW2070207940MaRDI QIDQ4508242
Jean-Luc Achard, Édouard Canot, Rabha MacHane
Publication date: 3 October 2000
Full work available at URL: https://doi.org/10.1002/1097-0363(20000915)34:1<47::aid-fld49>3.0.co;2-f
Navier-Stokes equationsiterative procedureintegral equationGreen's functionvorticity transport equationvelocity-vorticity formulationindirect boundary integral methodHelmholtz's decomposition
Navier-Stokes equations for incompressible viscous fluids (76D05) Boundary element methods applied to problems in fluid mechanics (76M15)
Related Items (1)
Cites Work
- Unnamed Item
- A boundary element approach for nonlinear boundary-value problems
- Projection conditions on the vorticity in viscous incompressible flows
- The use of Stokes' fundamental solution for the boundary only element formulation of the three‐dimensional Navier–Stokes equations for moderate Reynolds numbers
This page was built for publication: A new velocity-vorticity boundary integral formulation for Navier-Stokes equations