Spaces of ${\mathcal D}_{L^p}-$type and the Hankel convolution
From MaRDI portal
Publication:4510067
DOI10.1090/S0002-9939-00-05583-0zbMath0966.46020MaRDI QIDQ4510067
Jorge J. Betancor, Benito J. González
Publication date: 19 October 2000
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Hankel transformationBessel operatorFourier transformationHankel convolution\({\mathcal D}_{L^p}-\)spaces
Integral transforms in distribution spaces (46F12) Topological linear spaces of test functions, distributions and ultradistributions (46F05)
Related Items (6)
Bessel wavelet transform and fractional Bessel wavelet transform on functions of rapid descent ⋮ On the generalized convolution for \(F_c, F_s\), and \(K-L\) integral transforms ⋮ The Bessel wavelet transform of distributions in DL2′-type space ⋮ On the polyconvolution with the weight function for the Fourier cosine, Fourier sine, and the Kontorovich-Lebedev integral transforms ⋮ Hypoellipticity of Hankel convolution equations in \({\mathcal D}_{L^1}\)-type spaces ⋮ On the Dunkl convolution equations in spaces of type
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variation diminishing Hankel transforms
- Elements of \({\mathcal D}_{L^s}^{\prime (M_ p)}\) and \({\mathcal D}_{L^s}^{\prime (M_ p)}\) as boundary values of holomorphic functions
- On Hankel convolution equations in distribution spaces
- Bounded subsets in spaces of distributions of \(L^ p\)-growth
- On convolution operators and multipliers of distributions of \(L^ p\)- growth
- On the topology of the space of Hankel convolution operators
- Bessel-Transformationen in Räumen von Grundfunktionen über dem Intervall Ω = (0, ∞) und deren Dualräumen
- On the Hypoellipticity of Convolution Equations in the Ultradistribution Spaces of L q Growth
- Characterizations of Bounded Sets in Spaces of Ultradistributions
- The Hankel Convolution and the Zemanian Spaces βμ and β'μ
- Integral Equations Associated with Hankel Convolutions
- An Inversion Theorem for Hankel Transforms
- Hankel convolution on distribution spaces with exponential growth
- ON THE MEAN INVERSION OF FOURIER AND HANKEL TRANSFORMS
- On the Convolution Equations in the Space of Distributions of L p -Growth
This page was built for publication: Spaces of ${\mathcal D}_{L^p}-$type and the Hankel convolution