On a generalization of the rank one Rubin-Stark conjecture
From MaRDI portal
Publication:452387
DOI10.1016/J.JNT.2012.05.008zbMath1368.11117OpenAlexW2041082071WikidataQ123014690 ScholiaQ123014690MaRDI QIDQ452387
Publication date: 21 September 2012
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2012.05.008
Class numbers, class groups, discriminants (11R29) Zeta functions and (L)-functions of number fields (11R42)
Related Items (4)
The equivariant Tamagawa number conjecture and the extended abelian Stark conjecture ⋮ The \((S, \{2 \})\)-Iwasawa theory ⋮ Numerical evidence for higher order Stark-type conjectures ⋮ On \(p\)-adic Diamond-Euler log gamma functions
Uses Software
Cites Work
- Two cases of Stark's conjecture
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Special values of Abelian \(L\)-functions at \(s=0\)
- An extension of the first-order Stark conjecture
- Values of abelian \(L\)-functions at negative integers over totally real fields
- \(L\)-functions at \(s=1\). IV: First derivatives at \(s=0\)
- Values at negative integers of zeta functions and \(p\)-adic zeta functions
- A Stark conjecture ``over \({\mathbb{Z}}\) for abelian \(L\)-functions with multiple zeros
- Galois groups of exponent two and the Brumer-Stark conjecture.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On a generalization of the rank one Rubin-Stark conjecture