A smoothing principle for the Huber and other location \(M\)-estimators
From MaRDI portal
Publication:452579
DOI10.1016/j.csda.2010.05.001zbMath1247.62058OpenAlexW2064301386WikidataQ60471573 ScholiaQ60471573MaRDI QIDQ452579
Frank Hampel, Elvezio Ronchetti, Christian Hennig
Publication date: 15 September 2012
Published in: Computational Statistics and Data Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.csda.2010.05.001
medianMADbreakdown pointrobust estimationCauchy distributiondouble exponential distributionHuber's least favourable distributionML-estimatorPitman estimatorsmall sample asymptotics
Point estimation (62F10) Exact distribution theory in statistics (62E15) Robustness and adaptive procedures (parametric inference) (62F35)
Related Items
Robust estimation for survival partially linear single-index models, \(M\)-type penalized splines with auxiliary scale estimation, M-estimator based unit root tests in the ESTAR framework, Unnamed Item, Renewable Huber estimation method for streaming datasets, Higher-Order Infinitesimal Robustness, Consistency of the elastic net under a finite second moment assumption on the noise, Empirical likelihood-based inference for the difference of two location parameters using smoothed M-estimators, Unnamed Item, Penalized unimodal spline density estimation with application to \(M\)-estimation, The Extent of Gross Errors Eliminated by Robust Multiple Linear Regressions
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the finite sample breakdown points of redescending \(M\)-estimates of location
- Robust estimation in very small samples.
- The Pitman estimator of the Cauchy location parameter
- A computational strategy for doubly smoothed MLE exemplified in the normal mixture model
- On a formula for the distribution of the maximum likelihood estimator
- Saddlepoint approximations for estimating equations
- Improved estimators for the location of double exponential distribution
- Saddle point approximation for the distribution of the sum of independent random variables
- Small-sample asymptotic distributions of M-estimators of location
- Higher-order approximations for pitman estimators and for optimal compromise estimators
- Robust Statistics
- Robust Estimation of a Location Parameter
- Robust Estimates of Location: Survey and Advances
- THE ESTIMATION OF THE LOCATION AND SCALE PARAMETERS OF A CONTINUOUS POPULATION OF ANY GIVEN FORM
- Robust Statistics