Geometric construction of highest weight crystals for quantum generalized Kac-Moody algebras
From MaRDI portal
Publication:453310
DOI10.1007/s00208-011-0725-5zbMath1287.17032arXiv0908.1158OpenAlexW2112999949MaRDI QIDQ453310
Seok-Jin Kang, Masaki Kashiwara, Olivier Schiffmann
Publication date: 19 September 2012
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0908.1158
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67)
Related Items (6)
Description of crystals for generalized Kac-Moody algebras using rigged configurations ⋮ Rigged configurations and the \(\ast \)-involution for generalized Kac-Moody algebras ⋮ Quantum Borcherds-Bozec algebras and their integrable representations ⋮ Classical limit of quantum Borcherds-Bozec algebras ⋮ CATEGORIFICATION OF QUANTUM GENERALIZED KAC–MOODY ALGEBRAS AND CRYSTAL BASES ⋮ Abstract crystals for quantum Borcherds–Bozec algebras
Cites Work
- Unnamed Item
- Geometric construction of crystal bases for quantum generalized Kac-Moody algebras
- Generalized Kac-Moody algebras
- On crystal bases of the \(q\)-analogue of universal enveloping algebras
- Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras
- Geometric construction of crystal bases
- Crystal bases and quiver varieties
- Canonical Bases Arising from Quantized Enveloping Algebras
- Crystal bases for quantum generalized kac–moody algebras
- Abstract Crystals for Quantum Generalized Kac-Moody Algebras
This page was built for publication: Geometric construction of highest weight crystals for quantum generalized Kac-Moody algebras