A linear eigenvalue algorithm for the nonlinear eigenvalue problem
DOI10.1007/s00211-012-0453-0zbMath1256.65043OpenAlexW2078578549MaRDI QIDQ453331
Karl Meerbergen, Elias Jarlebring, Wim Michiels
Publication date: 19 September 2012
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-012-0453-0
Chebyshev polynomialsnumerical examplesnonlinear eigenvalue problemKrylov subspace methodArnoldi algorithmdelay eigenvalue problemoperator eigenvalue problem
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Numerical solution of nonlinear eigenvalue and eigenvector problems (65H17)
Related Items (32)
Uses Software
Cites Work
- Unnamed Item
- A block Newton method for nonlinear eigenvalue problems
- Structured polynomial eigenproblems related to time-delay systems
- Nonlinear Rayleigh-Ritz iterative method for solving large scale nonlinear eigenvalue problems
- Implicit QR algorithms for palindromic and even eigenvalue problems
- Introduction to functional differential equations
- An Arnoldi method for nonlinear eigenvalue problems
- Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems
- Pseudospectral approximation of eigenvalues of derivative operators with nonlocal boundary conditions
- A numerical method for nonlinear eigenvalue problems using contour integrals
- Solving Rational Eigenvalue Problems via Linearization
- Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form
- NLEVP
- Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem
- The Quadratic Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem
- Residual Inverse Iteration for the Nonlinear Eigenvalue Problem
- Inverse Iteration, Ill-Conditioned Equations and Newton’s Method
- ARPACK Users' Guide
- Spectral Methods in MATLAB
- Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods
- A Krylov Method for the Delay Eigenvalue Problem
- SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem
- Algorithms for the Nonlinear Eigenvalue Problem
- Nichtlineare Behandlung von Eigenwertaufgaben
- The principle of minimized iterations in the solution of the matrix eigenvalue problem
This page was built for publication: A linear eigenvalue algorithm for the nonlinear eigenvalue problem