An extension of Greenberg's theorem to general valuation rings
DOI10.1007/S00229-011-0510-5zbMath1253.13011arXiv1106.0984OpenAlexW1982247462MaRDI QIDQ453353
Publication date: 19 September 2012
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1106.0984
valuation ringsordered groupsultraproductsclosed image mapclosed image theoremconvex subgroupsGreenberg's strong approximation theoremHenselian domaininfinitesimal Hasse principleschemes of finite presentation
Other nonalgebraically closed ground fields in algebraic geometry (14G27) Valuation rings (13F30) Étale and flat extensions; Henselization; Artin approximation (13B40) Ultraproducts and field theory (12L10)
Related Items (8)
Cites Work
- Ultraproducts and approximation in local rings. I
- Nombres de Tamagawa et groupes unipotents en caractéristique p
- The use of ultraproducts in commutative algebra
- Existential definability of non-nullity in rings
- Approximation properties for some non-Noetherian local rings
- Rational points in Henselian discrete valuation rings
- Critères de platitude et de projectivité. Techniques de platification d'un module. (Criterial of flatness and projectivity. Technics of flatification of a module.)
- Solutions d'équations à coefficients dans un anneau hensélien
- Unnamed Item
This page was built for publication: An extension of Greenberg's theorem to general valuation rings