Plane affine geometry and Anosov flows
From MaRDI portal
Publication:4534275
DOI10.1016/S0012-9593(01)01079-5zbMath1098.37513OpenAlexW2091733928MaRDI QIDQ4534275
Publication date: 8 August 2002
Published in: Annales Scientifiques de l’École Normale Supérieure (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=ASENS_2001_4_34_6_871_0
Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) (37D20) Foliations in differential topology; geometric theory (57R30) Low-dimensional dynamical systems (37E99)
Related Items (9)
Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem ⋮ Pseudo-Anosov flows in toroidal manifolds ⋮ Orbit equivalences of \(\mathbb{R}\)-covered Anosov flows and hyperbolic-like actions on the line. With an appendix written jointly with Jonathan Bowden ⋮ Veering branched surfaces, surgeries, and geodesic flows ⋮ Transversely projective foliations on Seifert manifolds. ⋮ Contact Anosov flows on hyperbolic 3-manifolds ⋮ Isometries of Lorentz surfaces and convergence groups ⋮ Convergence groups and semiconjugacy ⋮ Three-dimensional Anosov flag manifolds
Cites Work
- Flots d'Anosov sur les variétés graphées au sens de Waldhausen. (Anosov flows on graph manifolds in the sense of Waldhausen.)
- Transitive Anosov flows and pseudo-Anosov maps
- Anosov flows on new three manifolds
- Deformations of Anosov flows and of Fuchsian groups
- Unique ergodicity for horocycle foliations
- Open manifolds foliated by planes
- Generalizations of the Bonatti-Langevin example of Anosov flow and their classification up to topological equivalence
- Anosov flows in 3-manifolds
- Differentiable rigidity of Fuchsian groups
- The structure of branching in Anosov flows of 3-manifolds
- Compact projective planes. With an introduction to octonion geometry
- Differentiability, rigidity and Godbillon-Vey classes for Anosov flows
- Certain measures associated with U-flows on compact manifolds
- Anosov flows and the fundamental group
- Flots d'Anosov sur les 3-variétés fibrées en cercles
- Flots d'Anosov dont les feuilletages stables sont différentiables
- Anosov Flows, Transversely Affine Foliations, and a Conjecture of Verjovsky
- Prevalence of non-Lipschitz Anosov foliations
- Un exemple de flot d'Anosov transitif transverse à un tore et non conjugué à une suspension
- Codimension one Anosov flows and a conjecture of Verjovsky
- Caractérisation des flots d' Anosov en dimension 3 par leurs feuilletages faibles
- On Codimension One Anosov Diffeomorphisms
- Anosov Flows
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Plane affine geometry and Anosov flows