A theorem of Hadamard-Cartan type for Kähler magnetic fields
From MaRDI portal
Publication:455014
DOI10.2969/jmsj/06430969zbMath1252.53047OpenAlexW2095295322MaRDI QIDQ455014
Publication date: 2 October 2012
Published in: Journal of the Mathematical Society of Japan (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.jmsj/1343133751
trajectoriescomparison theoremKähler magnetic fieldstrajectory-spherestheorem of Hadamard-Cartantheorem of Hopf-Rinowtrajectory-harps
Geodesics in global differential geometry (53C22) Local differential geometry of Hermitian and Kählerian structures (53B35)
Related Items
Foliation on the moduli space of extrinsic circular trajectories on a complex hyperbolic space, Accurate trajectory-harps for Kähler magnetic fields, Asymptotic behaviors of trajectories on a Hadamard Kähler manifold, Kähler magnetic fields on Kähler manifolds of negative curvature, An estimate on volumes of trajectory-balls for Kähler magnetic fields, Distances from unbounded trajectories to their limit-strings on a Hadamard Kähler manifold, Volumes of trajectory-balls for Kähler magnetic fields, Estimates on arc-lengths of trajectory-fronts for surface magnetic fields
Cites Work
- Unnamed Item
- The theorem of E. Hopf under uniform magnetic fields
- Magnetic flows of Anosov type
- Kähler magnetic flows for a manifold of constant holomorphic sectional curvature
- On circles and spheres in Riemannian geometry
- A comparison theorem on magnetic jacobi fields
- MAGNETIC JACOBI FIELDS FOR KÄHLER MAGNETIC FIELDS