Кратная интерполяционная задача Валле Пуссена
DOI10.14498/vsgtu1369zbMath1412.47008OpenAlexW2396586722MaRDI QIDQ4553523
V. V. Napalkov, A. U. Mullabaeva
Publication date: 30 October 2018
Published in: Вестник Самарского государственного технического университета. Серия «Физико-математические науки» (Search for Journal in Brave)
Full work available at URL: http://mathnet.ru/eng/vsgtu1369
generalized convolution operatorinterpolation nodesFischer representationsequentially sufficient setde la Vallée Poussin problemeigenfunctions of the generalized differentiation operator
Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane (30E20) Linear operator methods in interpolation, moment and extension problems (47A57) Topological linear spaces of continuous, differentiable or analytic functions (46E10) Representations of entire functions of one complex variable by series and integrals (30D10) Bergman spaces and Fock spaces (30H20)
Related Items (1)
Cites Work
- Interpolation problem in kernels of operators generated by generalized Bargmann-Fock spaces
- The holomorphic Cauchy problem for the convolution operator in analytically uniform spaces, and Fisher expansions.
- Dunkl convolution operators and their properties
- On one class of differential operators and their application
- La dualité dans les espaces \((\mathcal F)\) et \((\mathcal{LF})\)
- The multipoint de la Vallée-Poussin problem for a convolution operator
- An Algebraic Theorem of E. Fischer, and the Holomorphic Goursat Problem
- Zeros of the Green's function for the de la Vallée-Poussin problem
- SPECTRAL THEORY IN SPACES OF ANALYTIC FUNCTIONALS FOR OPERATORS GENERATED BY MULTIPLICATION BY THE INDEPENDENT VARIABLE
- Equivalence of Cauchy Problems for Entire and Exponential Type Functions
- NON-OSCILLATION OF SOLUTIONS OF THE EQUATIONx(n)+p1(t)x(n−1)+ … +pn(t)x= 0
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Кратная интерполяционная задача Валле Пуссена