TERNARY DIVISOR FUNCTIONS IN ARITHMETIC PROGRESSIONS TO SMOOTH MODULI
From MaRDI portal
Publication:4555390
DOI10.1112/S0025579318000220zbMath1448.11176OpenAlexW2808923105MaRDI QIDQ4555390
Publication date: 20 November 2018
Published in: Mathematika (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1112/s0025579318000220
Asymptotic results on arithmetic functions (11N37) Exponential sums (11T23) Gauss and Kloosterman sums; generalizations (11L05) Distribution of integers with specified multiplicative constraints (11N25) Arithmetic progressions (11B25)
Related Items
Bilinear sums with GL(2)$GL(2)$ coefficients and the exponent of distribution of d3$d_3$, Bounds on bilinear forms with Kloosterman sums, Bilinear forms with Kloosterman and Gauss sums in function fields, Arithmetic exponent pairs for algebraic trace functions and applications
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- New equidistribution estimates of Zhang type
- An elementary proof of a formula of Kuznecov for Kloosterman sums
- Incomplete Kloosterman sums and a divisor problem. Appendix: On some exponential sums by Bryan J. Birch and Enrico Bombieri
- La conjecture de Weil. II
- On \(n\)-dimensional Kloosterman sums
- Algebraic twists of modular forms and Hecke orbits
- Algebraic trace functions over the primes
- An Asymptotic Formula in the Theory of Numbers
- Sur le problème des diviseurs de Titchmarsh.
- The divisor function $d_3(n)$ in arithmetic progressions
- The Divisor Function in Arithmetic Progressions to Smooth Moduli
- Exponential Sums and Differential Equations. (AM-124)
- ON THE EXPONENT OF DISTRIBUTION OF THE TERNARY DIVISOR FUNCTION
- Colloquium De Giorgi 2013 and 2014