Computation of Maximal Determinants of Binary Circulant Matrices
zbMath1388.05028arXiv1801.00399MaRDI QIDQ4568052
Richard P. Brent, Adam B. Yedidia
Publication date: 15 June 2018
Full work available at URL: https://arxiv.org/abs/1801.00399
parallel computationHadamard matrixparallel algorithmdifference setquantile estimationbinary matrixcirculantmodular computationLyndon wordnecklacemaximal determinantHadamard boundcomputational imagingURABooth's algorithmcirculant coreconvolutional Gaussian channeldiscrete Mahler measureDuval's algorithmMURA
Exact enumeration problems, generating functions (05A15) Combinatorial identities, bijective combinatorics (05A19) Combinatorial aspects of matrices (incidence, Hadamard, etc.) (05B20) Combinatorics on words (68R15) Numerical methods for discrete and fast Fourier transforms (65T50)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Génération d'une section des classes de conjugaison et arbre des mots de Lyndon de longueur bornée. (Generation of a section of conjugation classes and trees of Lyndon words of bounded length)
- Lexicographically least circular substrings
- Average cost of Duval's algorithm for generating Lyndon words
- The maximum determinant of \(\pm 1\) matrices
- The Magma algebra system. I: The user language
- Determinantenabschätzung für binäre Matrizen mit \(n\equiv 3\bmod 4\)
- Determinantenabschätzungen für binäre Matrizen. (Estimation of determinants for binary matrices)
- Hadamard's determinant theorem and the sum of four squares
- The Mahler measure of algebraic numbers: a survey
- A Survey of Difference Sets
- A Family of Difference Sets
- Fast canonization of circular strings
- Fast Pattern Matching in Strings
- On Orthogonal Matrices
- Computing k-th Lyndon Word and Decoding Lexicographically Minimal de Bruijn Sequence
- On Hadamard's inequality for the determinants of order non-divisible by 4
- A Theorem in Finite Projective Geometry and Some Applications to Number Theory
- On Burnside's Problem
- A family of difference sets