Geometric Analysis on the Diederich-Forn{\ae}ss Index
From MaRDI portal
Publication:4578292
zbMath1400.32018arXiv1606.02343MaRDI QIDQ4578292
Bingyuan Liu, Steven G. Krantz, Marco M. Peloso
Publication date: 8 August 2018
Full work available at URL: https://arxiv.org/abs/1606.02343
Related Items
The intrinsic geometry on bounded pseudoconvex domains ⋮ On the Steinness index ⋮ The core of the Levi distribution ⋮ The Diederich-Fornæss index. II: For domains of trivial index ⋮ Hartogs domains and the Diederich-Fornæss index ⋮ The Diederich-Fornaess index and good vector fields ⋮ On competing definitions for the Diederich-Fornæss index
Cites Work
- Unnamed Item
- The Diederich-Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries
- Oka's lemma, convexity, and intermediate positivity conditions
- De Rham cohomology of manifolds containing the points of infinite type, and Sobolev estimates for the \(\bar \partial\)-Neumann problem
- Convex defining functions for convex domains
- Plurisubharmonic defining functions of weakly pseudoconvex domains in \({\mathbb{C}}^ 2\)
- Sobolev estimates for the \({\bar \partial}\)-Neumann operator on domains in \({\mathbb{C}}^ n\) admitting a defining function that is plurisubharmonic on the boundary
- The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries
- Analysis and geometry on worm domains
- A note on plurisubharmonic defining functions in \({\mathbb{C}^{n}}\)
- Mesures de Monge-Ampère et mesures pluriharmoniques. (Monge-Ampère measures and pluriharmonic measures)
- Subelliptic estimates for the \({\bar \partial}\)-Neumann problem on pseudoconvex domains
- Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut
- Lower bounds on the Bergman metric near a point of finite type
- Behavior of the Bergman projection on the Diederich-Fornæss worm
- Pseudoconvex domains: An example with nontrivial nebenhuelle
- Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions
- Pseudoconvex domains: Existence of Stein neighborhoods
- A Sobolev mapping property of the Bergman kernel
- Bounded plurisubharmonic exhaustion functions for Lipschitz pseudoconvex domains in \(\mathbb {CP}^n\)
- Local and global plurisubharmonic defining functions
- A note on plurisubharmonic defining functions in \(\mathbb{C}^2\)
- The Diederich-Fornaess index and the global regularity of the \(\bar \partial\)-Neumann problem
- A global estimate for the Diederich-Fornaess index of weakly pseudoconvex domains
- Introduction to Smooth Manifolds
- Bounded p.s.h. functions and pseudoconvexity in Kähler manifold
- Käahler identity on Levi flat manifolds and application to the embedding
- Riemannian Geometry
This page was built for publication: Geometric Analysis on the Diederich-Forn{\ae}ss Index