Bayesian estimation in a high dimensional parameter framework
DOI10.1214/14-EJS935zbMath1297.62188MaRDI QIDQ457965
Denis Bosq, María D. Ruiz-Medina
Publication date: 30 September 2014
Published in: Electronic Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.ejs/1410181226
asymptotic relative efficiencyBayesian estimationHilbert valued Gaussian random variableHilbert valued Poisson process
Inference from stochastic processes and prediction (62M20) Time series, auto-correlation, regression, etc. in statistics (GARCH) (62M10) Bayesian inference (62F15) Bayesian problems; characterization of Bayes procedures (62C10)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs
- Robust functional principal components: a projection-pursuit approach
- Spatial autoregressive and moving average Hilbertian processes
- Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes
- Linear processes in function spaces. Theory and applications
- Exponential bounds for intensity of jumps
- Functional data analysis.
- Nonparametric functional data analysis. Theory and practice.
- Approximation spline de la prevision d'un processus fonctionnel autorégressif d'ordre 1
- Inference and Prediction in Large Dimensions
This page was built for publication: Bayesian estimation in a high dimensional parameter framework