Elliptic basis for the Zernike system: Heun function solutions
DOI10.1063/1.5030759zbMath1401.78002OpenAlexW2876621988MaRDI QIDQ4583124
Natig M. Atakishiyev, Alexander Yakhno, George S. Pogosyan, Kurt Bernardo Wolf
Publication date: 27 August 2018
Published in: Journal of Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1063/1.5030759
Heun polynomialshydrogen atomquantum mechanicsharmonic oscillatorJacobi elliptic coordinatesZernike equation
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Atomic physics (81V45) Geometric optics (78A05) Wave front sets in context of PDEs (35A18)
Related Items (2)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Jacobi elliptic coordinates, functions of Heun and Lamé type and the Niven transform
- Completeness of superintegrability in two-dimensional constant-curvature spaces
- Classical and quantum superintegrability with applications
- Wave Functions for the Hydrogen Atom in Spheroidal Coordinates I: The Derivation and Properties of the Functions
- Exact and quasiexact solvability of second-order superintegrable quantum systems: I. Euclidean space preliminaries
- The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature
- Hypergeometric Orthogonal Polynomials and Their q-Analogues
- Second Order Differential Equations
- Dynamical symmetries in a spherical geometry. I
- Interbasis expansions in the Zernike system
- Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode
- Quantum superintegrable Zernike system
- Superintegrable classical Zernike system
This page was built for publication: Elliptic basis for the Zernike system: Heun function solutions