Sobolev embedding into BMO and weak-\(L^\infty\) for \(1\)-dimensional probability measure
From MaRDI portal
Publication:458338
DOI10.1016/j.jmaa.2014.08.045zbMath1333.46027OpenAlexW1968183360MaRDI QIDQ458338
Filomena Feo, Maria Rosaria Posteraro, Joaquim Martín
Publication date: 7 October 2014
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2014.08.045
embeddingrearrangement invariant spaceBMO space\(1\)-dimensional log-concave probability measureweak-\(L^\infty\) space
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Logarithmic Sobolev trace inequalities
- Pointwise symmetrization inequalities for Sobolev functions and applications
- Isoperimetry and symmetrization for logarithmic Sobolev inequalities
- Optimal Gaussian Sobolev embeddings
- Weak-\(L^\infty\) and BMO
- A proof of a logarithmic Sobolev inequality
- Sobolev embeddings into BMO, VMO, and \(L_{\infty}\)
- BMO for nondoubling measures
- The \(Tb\)-theorem on non-homogeneous spaces.
- Extremal properties of half-spaces for log-concave distributions
- BMO and \(H^{1}\) for the Ornstein-Uhlenbeck operator
- On the theory of spaces \(\Lambda\)
- Weak $L^{\infty}$ and BMO in metric spaces
- Some connections between isoperimetric and Sobolev-type inequalities
- Fractional Sobolev Inequalities: Symmetrization, Isoperimetry and Interpolation
- BMO, \(H^1\), and Calderón-Zygmund operators for non doubling measures