Existence of standing wave solutions for coupled quasilinear Schrödinger systems with critical exponents in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>ℝ</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:mrow>
DOI10.14232/EJQTDE.2017.1.12zbMATH Open1413.35184OpenAlexW2604926089MaRDI QIDQ4584481
No author found.
Publication date: 3 September 2018
Published in: Electronic Journal of Qualitative Theory of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.14232/ejqtde.2017.1.12
File on IPFS (Hint: this is only the Hash - if you get a timeout, this file is not available on our server.)
mountain pass theoremcritical growthstanding wave solutionsquasilinear Schrödinger system\((PS)_c\) sequence
Nonlinear elliptic equations (35J60) Variational methods for elliptic systems (35J50) NLS equations (nonlinear Schrödinger equations) (35Q55)
Related Items (4)
Recommendations
- Existence and multiplicity of standing wave solutions for a class of quasilinear Schrödinger systems in \(\mathbb{R}^{N}\) 👍 👎
- Standing waves for linearly coupled Schrödinger equations with critical exponent 👍 👎
- Existence and stability of standing waves for a coupled nonlinear Schrödinger system 👍 👎
- Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in \(\mathbb R^N\) 👍 👎
- Existence of standing waves for coupled nonlinear Schrödinger equations 👍 👎
- Existence of standing waves for quasi-linear Schrödinger equations on \(T^n\) 👍 👎
- On the existence of standing wave solutions for a class of quasilinear Schrödinger systems 👍 👎
- Existence of solutions for a coupled Schrödinger equations with critical exponent 👍 👎
- Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents 👍 👎
- On the existence of standing wave solutions to quasilinear Schrödinger equations 👍 👎
This page was built for publication: Existence of standing wave solutions for coupled quasilinear Schrödinger systems with critical exponents in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>ℝ</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:mrow></mml:mat