Normal form of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> Hopf bifur
DOI10.14232/EJQTDE.2017.1.50zbMath1413.37035OpenAlexW2726386424MaRDI QIDQ4584521
Alexander Razgulin, Stanislav S. Budzinskiy
Publication date: 3 September 2018
Published in: Electronic Journal of Qualitative Theory of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.14232/ejqtde.2017.1.50
symmetrydelayfunctional-differential equationnormal formequivariant Hopf bifurcationnonlinear optical system
Normal forms for dynamical systems (37G05) Lasers, masers, optical bistability, nonlinear optics (78A60) Dynamical aspects of symmetries, equivariant bifurcation theory (37G40)
Related Items (2)
This page was built for publication: Normal form of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> Hopf bifur