Pontryagin duality for Iwasawa modules and abelian varieties
DOI10.1090/tran/7016zbMath1444.11236arXiv1406.5815OpenAlexW2247072736MaRDI QIDQ4600436
Fabien Trihan, Ignazio Longhi, King-Fai Lai, Ki-Seng Tan
Publication date: 9 January 2018
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1406.5815
Arithmetic theory of algebraic function fields (11R58) Elliptic curves over global fields (11G05) Abelian varieties of dimension (> 1) (11G10) Zeta functions and (L)-functions of number fields (11R42) Iwasawa theory (11R23) Zeta functions and (L)-functions (11S40) Galois cohomology (11R34)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Class fields of abelian extensions of \(\mathbb Q\)
- On duality and Iwasawa descent
- On p-adic power series
- Selmer groups and coupling; particular case of elliptic curves
- Zur Vermutung von Birch und Swinnerton-Dyer über globalen Funktionenkoerpern
- Selmer groups over \(\mathbb Z_p^d\)-extensions
- Rational points of Abelian varieties with values in towers of number fields
- Pairings and functional equations over the GL2 -extension†
- The Iwasawa Main Conjecture for constant ordinary abelian varieties over function fields
- A generalized Mazur’s theorem and its applications
- On the Selmer groups of abelian varieties over function fields of characteristic p > 0
- CONTROL THEOREMS FOR ELLIPTIC CURVES OVER FUNCTION FIELDS
This page was built for publication: Pontryagin duality for Iwasawa modules and abelian varieties