On the quantum theory of the natural transform and some applications
From MaRDI portal
Publication:4626003
DOI10.1080/10236198.2018.1554063zbMath1414.44003OpenAlexW2910808461MaRDI QIDQ4626003
Publication date: 26 February 2019
Published in: Journal of Difference Equations and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/10236198.2018.1554063
Laplace transform (44A10) Integral transforms of special functions (44A20) Basic hypergeometric functions in one variable, ({}_rphi_s) (33D15) (q)-gamma functions, (q)-beta functions and integrals (33D05)
Related Items (3)
Natural transform of two variables in \(q\)-calculus with applications ⋮ \(q\)-deformed conformable fractional natural transform ⋮ Unnamed Item
Cites Work
- Applications of the Mellin transform in quantum calculus
- On Sumudu transform and system of differential equations
- The zeros of basic Bessel functions, the functions J(nu+ax)(x), and associated orthogonal polynomials
- An estimate of Sumudu transforms for boehmians
- Certain results related to the \(N\)-transform of a certain class of functions and differential operators
- Some results for Laplace-type integral operator in quantum calculus
- Mellin transforms for some families of \(q\)-polynomials
- On the \(q\)-analog of the Laplace transform
- On integral representations of \(q\)-gamma and \(q\)-beta functions
- Wavelet Transforms in Quantum Calculus
- On q-Analogues of the Fourier and Hankel Transforms
- On q-analogues of the natural transform of certain q-Bessel functions and some application
- On q-Sumudu transforms of certain q-polynomials
- Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q‐Differenzengleichung. Das q‐Analogon der Laplace‐Transformation
- Die mechanische Deutung einer geometrischen Differenzgleichung
- Quantum calculus
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On the quantum theory of the natural transform and some applications