Covers in \(p\)-adic analytic geometry and log covers. I: cospecialization of the \((p^\prime)\)-tempered fundamental group for a family of curves
From MaRDI portal
Publication:462800
DOI10.5802/aif.2807zbMath1345.11043arXiv0909.2805OpenAlexW2963245006MaRDI QIDQ462800
Publication date: 21 October 2014
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0909.2805
Curves over finite and local fields (11G20) Coverings of curves, fundamental group (14H30) Rigid analytic geometry (14G22)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tempered fundamental group and metric graph of a Mumford curve
- Smooth \(p\)-adic analytic spaces are locally contractible
- On a geometric description of \(\text{Gal}(\bar{\mathbb Q}_p/\mathbb Q_p)\) and a \(p\)-adic avatar of \(\widehat{GT}\)
- Prime to \(p\) fundamental groups and tame Galois actions
- Saturated morphisms of logarithmic schemes
- Period mappings and differential equations. From \({\mathbb C}\) to \({\mathbb C}_p\). Tôhoku-Hokkaidô lectures in arithmetic geometry. With appendices: A: Rapid course in \(p\)-adic analysis by F. Kato, B: An overview of the theory of \(p\)-adic unifomization by F. Kato, C: \(p\)-adic symmetric domains and Totaro's theorem by N. Tsuzuki
- Semi-graphs of anabelioids
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Anneaux locaux henséliens
- Covers inp-adic analytic geometry and log covers II: cospecialization of the (p′)-tempered fundamental group in higher dimensions
- Logarithmic structures of Fontaine-Illusie. II
- DEGENERATIONS OFK3 SURFACES AND ENRIQUES SURFACES
- Altérations et groupe fondamental premier à $p$
- Lectures on Logarithmic Algebraic Geometry
This page was built for publication: Covers in \(p\)-adic analytic geometry and log covers. I: cospecialization of the \((p^\prime)\)-tempered fundamental group for a family of curves