Nonlinear integrable couplings of a generalized super Ablowitz‐Kaup‐Newell‐Segur hierarchy and its super bi‐Hamiltonian structures
DOI10.1002/mma.4686zbMath1406.35330arXiv1706.05234OpenAlexW2732365374MaRDI QIDQ4634503
Ling Zhang, Wen-Xiu Ma, Tie-cheng Xia, Bei-Bei Hu
Publication date: 10 April 2018
Published in: Mathematical Methods in the Applied Sciences (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1706.05234
Lie superalgebrassuper bi-Hamiltonian structuressuper integrable couplingsgeneralized super AKNS hirearchy
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) KdV equations (Korteweg-de Vries equations) (35Q53) Soliton equations (35Q51) Applications of Lie algebras and superalgebras to integrable systems (17B80) Riemann-Hilbert problems in context of PDEs (35Q15)
Related Items (3)
This page was built for publication: Nonlinear integrable couplings of a generalized super Ablowitz‐Kaup‐Newell‐Segur hierarchy and its super bi‐Hamiltonian structures