A relative error-based estimation with an increasing number of parameters
From MaRDI portal
Publication:4638695
DOI10.1080/03610926.2017.1301474zbMath1388.62049OpenAlexW2598065782MaRDI QIDQ4638695
Hao Ding, Yao-hua Wu, Zhan-Feng Wang
Publication date: 27 April 2018
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2017.1301474
asymptotic propertieshypothesis testingmultiplicative regression modelleast product relative errorparameters with increasing dimension
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Group variable selection for relative error regression
- Least product relative error estimation
- A change-point problem in relative error-based regression
- On M-processes and M-estimation
- Asymptotic behavior of M estimators of p regression parameters when \(p^ 2/n\) is large. II: Normal approximation
- Asymptotics with increasing dimension for robust regression with applications to the bootstrap
- Asymptotic behavior of M-estimators for the linear model
- Relative-error prediction
- Limiting behavior of \(M\)-estimators of regression coefficients in high dimensional linear models. I: Scale-dependent case. II: Scale-invariant case
- On parameters of increasing dimensions
- Robust regression: Asymptotics, conjectures and Monte Carlo
- Nonconcave penalized likelihood with a diverging number of parameters.
- Least Absolute Relative Error Estimation
- Asymptotic oracle properties of SCAD-penalized least squares estimators
- Convex Analysis