Group Theory for Physicists
DOI10.1142/11187zbMath1402.20001OpenAlexW343468186MaRDI QIDQ4645143
Publication date: 10 January 2019
Full work available at URL: https://doi.org/10.1142/11187
idempotentssymplectic groupsCartan matricespolyhedracharactersLie groupspermutation groupsorthogonal groupssubgroupshomomorphismssymmetriescosetsunitary groupsLie algebrasEuler anglesYoung tableauxirreducible representationswave functionsrotation groupsLittlewood-Richardson rulegroup theoryDynkin diagramscrystallographic groupspoint groupsspinor representationsClebsch-Gordan coefficientsSchur theoremLorentz groupmesonstensor representationsKilling formsbaryonsChevalley basesmass formulasmomentum operatorsN-body quantum systemscenters of mass
Applications of Lie groups to the sciences; explicit representations (22E70) Mathematics for nonmathematicians (engineering, social sciences, etc.) (00A06) Other geometric groups, including crystallographic groups (20H15) Molecular physics (81V55) Applications of group representations to physics and other areas of science (20C35) Introductory exposition (textbooks, tutorial papers, etc.) pertaining to quantum theory (81-01) Introductory exposition (textbooks, tutorial papers, etc.) pertaining to group theory (20-01) Introductory exposition (textbooks, tutorial papers, etc.) pertaining to nonassociative rings and algebras (17-01) Introductory exposition (textbooks, tutorial papers, etc.) pertaining to topological groups (22-01) Representation theory of groups (20Cxx) Lie groups (22Exx) Permutation groups (20Bxx)
Related Items (4)
This page was built for publication: Group Theory for Physicists