DEFINABLE SUBCATEGORIES OVER PURE SEMISIMPLE RINGS
DOI10.1142/S0219498812500995zbMath1300.16010MaRDI QIDQ4649497
Nguyen Viet Dung, José Luis García
Publication date: 22 November 2012
Published in: Journal of Algebra and Its Applications (Search for Journal in Brave)
pure submodulespure semisimple ringscategories of right modulesleft almost split morphismsdefinable subcategoriescoherent Grothendieck categories
Module categories in associative algebras (16D90) Representation type (finite, tame, wild, etc.) of associative algebras (16G60) Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers (16G70) Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras) (16D70) Representations of associative Artinian rings (16G10) Simple and semisimple modules, primitive rings and ideals in associative algebras (16D60)
Related Items (4)
Cites Work
- A key module over pure-semisimple hereditary rings.
- Existenz von Auslander-Reiten-Folgen
- Preprojective modules over Artin algebras
- Exactly definable categories
- A test for finite representation type
- Copure semisimple categories and almost split maps.
- An Artin problem for division ring extensions and the pure semisimplicity conjecture. II
- Endofinite modules and pure semisimple rings.
- Endoproperties of modules and local duality.
- Preinjective modules over pure semisimple rings.
- On the endofiniteness of a key module over pure semisimple rings
- The Ziegler Spectrum of a Locally Coherent Grothendieck Category
- Generic Modules Over Artin Algebras
- Representation Theory of Artin Algebras II
- Finitely Presented Right Modules Over a Left Pure-Semisimple Ring
- PURE SEMISIMPLE FINITELY ACCESSIBLE CATEGORIES AND HERZOG'S CRITERION
- Gruson-Jensen Duality for Idempotent Rings
- Additive categories of locally finite representation type
This page was built for publication: DEFINABLE SUBCATEGORIES OVER PURE SEMISIMPLE RINGS