Riesz potentials, Bessel potentials and fractional derivatives on Triebel-Lizorkin spaces for the Gaussian measure
DOI10.1016/j.jmaa.2014.08.022zbMath1304.47053arXiv1209.6133OpenAlexW1993769395MaRDI QIDQ465171
Ebner Pineda, A. Eduardo Gatto, Wilfredo O. Urbina R.
Publication date: 31 October 2014
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1209.6133
Triebel-Lizorkin spacesfractional integrationGaussian measurefractional differentiationHermite expansions
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) One-parameter semigroups and linear evolution equations (47D06) Fractional derivatives and integrals (26A33) Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) Linear operators on function spaces (general) (47B38) Potential operators (47G40)
Related Items (1)
Cites Work
- Fractional differentiation for the Gaussian measure and applications
- Some results on Gaussian Besov-Lipschitz spaces and Gaussian Triebel-Lizorkin spaces
- Density questions in the classical theory of moments
- Riesz Potentials, Bessel Potentials, and Fractional Derivatives on Besov-Lipschitz Spaces for the Gaussian Measure
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Riesz potentials, Bessel potentials and fractional derivatives on Triebel-Lizorkin spaces for the Gaussian measure