Complete surfaces with negative extrinsic curvature in \(\mathbb M^2\times\mathbb R\)
From MaRDI portal
Publication:465423
DOI10.1016/j.jmaa.2014.10.002zbMath1307.53042OpenAlexW2040423115MaRDI QIDQ465423
José A. Gálvez, José L. Teruel
Publication date: 31 October 2014
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2014.10.002
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Complete surfaces of constant curvature in \(H^{2} \times \mathbb R\) and \(S^{2} \times \mathbb R\)
- Complete surfaces with positive extrinsic curvature in product spaces
- Efimov's theorem in dimension greater than two
- Existence of barriers for surfaces with prescribed curvatures in \(\mathbb M^ 2{\times}\mathbb R\)
- Efimov's theorem about complete immersed surfaces of negative curvature
- Über Flächen mit eindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind
- Surfaces à courbure extrinsèque négative dans l'espace hyperbolique
This page was built for publication: Complete surfaces with negative extrinsic curvature in \(\mathbb M^2\times\mathbb R\)