Heat trace and spectral action on the standard Podleś sphere
From MaRDI portal
Publication:466032
DOI10.1007/s00220-014-2054-5zbMath1321.58019arXiv1307.4188OpenAlexW3102253869MaRDI QIDQ466032
Andrzej Sitarz, Michał Eckstein, Bruno Iochum
Publication date: 24 October 2014
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1307.4188
Heat and other parabolic equation methods for PDEs on manifolds (58J35) Spectral theory; eigenvalue problems on manifolds (58C40) Noncommutative global analysis, noncommutative residues (58J42)
Related Items
Detailed balance as a quantum-group symmetry of Kraus operators ⋮ Dixmier traces and extrapolation description of noncommutative Lorentz spaces ⋮ Bell polynomials and Brownian bridge in spectral gravity models on multifractal Robertson-Walker cosmologies ⋮ Asymptotic and exact expansions of heat traces
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A twisted spectral triple for quantum \(SU(2)\)
- The spectral action and cosmic topology
- The coupling of topology and inflation in noncommutative cosmology
- Mellin transforms and asymptotics: Harmonic sums
- Moyal planes are spectral triples
- Tadpoles and commutative spectral triples
- Spectral action for torsion with and without boundaries
- The Dirac operator on \(\text{SU}_{q}(2)\)
- Inner fluctuations of the spectral action
- Multiple \(q\)-zeta functions and multiple \(q\)-polylogarithms
- Dirac operators on quantum projective spaces
- Regularity and dimension spectrum of the equivariant spectral triple for the odd-dimensional quantum spheres
- Dirac operators on all Podleś quantum spheres
- Note on the Euler \(q\)-zeta functions
- Spectral action on \(\mathrm{SU}_q(2)\)
- Quantum spheres
- \(q\)-analogue of Riemann's \(\zeta\)-function and \(q\)-Euler numbers
- The spectral action principle
- Heat kernel expansion: user's manual
- Dimensions and singular traces for spectral triples, with applications to fractals
- Multiple \(q\)-zeta values
- Spectral action for Robertson-Walker metrics
- Geometry from the spectral point of view
- The local index formula in noncommutative geometry
- Logarithmic divergence of heat kernels on some quantum spaces
- Spectral triples for the Sierpinski gasket
- Heat kernel and number theory on NC-torus
- Local index formula on the equatorial Podleś sphere
- Heat trace asymptotics on noncommutative spaces
- Spectral action on noncommutative torus
- The local index formula in semifinite von Neumann algebras. I: Spectral flow
- Dixmier traces and extrapolation description of noncommutative Lorentz spaces
- A local index formula for the quantum sphere
- Triplets spectraux pour les variétés à singularité conique isolée
- A residue formula for the fundamental Hochschild class on the Podleś sphere
- Index theory for locally compact noncommutative geometries
- Twisted Dirac operators over quantum spheres
- Logarithmic terms in asymptotic expansions of heat operator traces
- A VARIATION OF EULER′S APPROACH TO VALUES OF THE RIEMANN ZETA FUNCTION
- CYCLIC COHOMOLOGY, QUANTUM GROUP SYMMETRIES AND THE LOCAL INDEX FORMULA FOR SU q (2)
- The notion of dimension in geometry and algebra
- What is the Laplace Transform?
- On \(q\)-analogues of Riemann's zeta function
This page was built for publication: Heat trace and spectral action on the standard Podleś sphere