On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb{Z}_2\)-extension of \(\mathbb{Q}(\sqrt{p})\). II
From MaRDI portal
Publication:466161
DOI10.7169/FACM/2014.51.1.9zbMath1358.11122OpenAlexW1990702599MaRDI QIDQ466161
Takashi Fukuda, Keiichi Komatsu
Publication date: 24 October 2014
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.facm/1411564621
Related Items (2)
On the class semigroup of \(\mathbb{Z}_S\)-fields and Iwasawa invariants ⋮ On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb{Z}_2\)-extension of \(\mathbb{Q}(\sqrt{p})\). III.
Cites Work
- Iwasawa's \(\lambda\)-invariants of certain real quadratic fields
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- On the Stickelberger ideal and the circular units of an abelian field
- On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- On the Iwasawa $\lambda $-invariant of the cyclotomic $\mathbb {Z}_2$-extension of $\mathbb {Q}(\sqrt {p} )$
- On Γ-extensions of algebraic number fields
- Greenberg Conjecture for the Cyclotomic {\\mathbb Z}2-Extension of {\\mathbb Q}(√p)
- On the Iwasawa Invariants of Totally Real Number Fields
- The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
- Unnamed Item
This page was built for publication: On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb{Z}_2\)-extension of \(\mathbb{Q}(\sqrt{p})\). II